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Abstract
Elevated nitrogen (N) concentrations have detrimental effects on aquatic ecosystems worldwide,
calling for effective management practices. However, catchment-scale annual mass-balance
estimates often exhibit N deficits and time lags between the trajectory of net N inputs and that of N
riverine export. Here, we analyzed 40-year time series of N surplus and nitrate-N loads in 16
mesoscale catchments (104–10 135 km2) of a temperate agricultural region, with the aim to
(1) investigate the fate of the ‘missing N’, either still in transit through the soil—vadose
zone—groundwater continuum or removed via denitrification, and (2) estimate the transit time
distribution of N by convoluting the input signal with a lognormal model. We found that apparent
N retention, the ‘missing N’, ranged from 45%–88% of then N net input, and that topsoil N
accumulation alone accounted for ca. two-thirds of this retention. The mode of the nitrate-N
transit time distribution ranged from 2–14 years and was negatively correlated with the estimated
retention. Apparent retention was controlled primarily by average runoff, while the transit time
mode was controlled in part by lithology. We conclude that the fate of the soil ‘biogeochemical
legacy’, which represents much of the catchment-scale ‘missing N’, is in our hands, since the N
accumulated in soils can still be recycled in agroecosystems.

1. Introduction

Excess reactive nitrogen (N) in the environment
causes several detrimental effects, including acidifica-
tion, climate change and eutrophication, particularly
in marine ecosystems (Galloway et al 2003, Pinay et al
2017). Coastal and near-coastal eutrophication con-
tributes to the formation of algal blooms and hyp-
oxia, and these conditions threaten biodiversity, tour-
ism, and fisheries (Turner et al 2008, Andersen et al
2017, Wang et al 2016). Besides alteration to eco-
system structure and function, massive algal blooms,
also called ‘green tides’, can even result in a direct
human health risk with documented cases of mor-
tality due to exposure to toxic H2S gas emissions res-
ulting from decomposition of excess algae in shallow
tidal areas (Smetacek and Zingone 2013, LeMoal et al
2019).

N inputs from agriculture represent most of the
reactive N that enters streams and rivers, primarily

as nitrate, in economically developed countries
(Howarth and Marino 2006, De Vries et al 2011,
Li et al 2019). Efforts to limit agricultural N losses to
water include reduction of N surplus and maximiza-
tion of N removal in natural and engineered wetlands
(Seitzinger et al 2006). N mass-balance estimates at
catchment and regional scales often reveal a N defi-
cit, sometimes called ‘missing N’ (Van Breemen et al
2002), which commonly exceeds 50% of net inputs
(Howarth et al 1996, Alexander et al 2002, Boyer
et al 2002, Aquilina et al 2012, Lassaletta et al 2012,
Ehrhardt et al 2019). Knowing the fate of this missing
N has important implications for assessing trends in
water quality andmanaging global and local N cycles.
The missing N may have accumulated in the catch-
ment, building a legacy source that causes a time lag
in its transfer to surface water, or it may have been
removed via denitrification (Chen et al 2018).

The N legacy of a catchment includes a ‘biogeo-
chemical legacy’, when N accumulates in soil organic
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matter and may leach several years after on-field
application, and a ‘hydrological legacy’, which cor-
responds to the transit time of water in catchments.
Both types of legacies lead to time lags of several
years to decades between implementation of meas-
ures to curbN losses and decreasingN concentrations
in rivers (Van Meter and Basu 2017, Vero et al 2017).
In a long-term tracer experiment, Sebilo et al (2013)
observed that 12%–15%of isotopically labelledN still
remained in an agricultural soil 30 years after applic-
ation, 61%–65% having been taken up by plants and
the rest emitted into the environment. Van Meter
et al (2016) analyzed long-term soil N content in
the Mississippi River Basin and estimated a net accu-
mulation rate of 25–70 kg ha−1 yr−1. On the other
hand, N ‘hydrological legacy’ is assumed to follow
the transit time distribution (TTD) of water, which
can be investigated with conservative tracers and both
empirical and numerical models (Fovet et al 2015,
Hrachowitz et al 2016). Denitrification, the primary
process by which N surplus can be permanently
removed from a catchment, occurs in soils (Oehler
et al 2007), groundwater (Kolbe et al 2019), wetlands
(Montreuil et al 2010) and river networks (Pinay
et al 2015). Denitrification produces both inert N2

and the greenhouse gas N2O. Multiple studies have
observed denitrification at local scales, but upscaling
to the catchment scale remains a challenge (Seitzinger
et al 2006).

Few studies have simultaneously investigated
both N retention and TTD, seemingly because doing
so requires having detailed agricultural, soil and
hydrological data to quantify budgets accurately and
having these data over long periods. Such datasets
have been rarely available until recently (Howden et al
2010, VanMeter et al 2017, 2018, Ehrhardt et al 2019).
In this article, we analyzed long-term (1976–2015)
data from previously estimated N surpluses (Poisvert
et al 2017) and newly estimated riverine nitrate export
and soil N content variation. The research object-
ives were to (1) estimate N retention and TTD and
(2) relate these estimates to geographic variables
(catchment area, annual runoff, lithology).

The study sites include 16 catchments in the Brit-
tany region (western France), which is one of the
emblematic areas for N-derived coastal eutrophica-
tion in Europe (Smetacek and Zingone 2013). It also
has few N point sources (Gascuel-Odoux et al 2010),
has experienced large variations in its N surplus in the
past few decades (Dupas et al 2018) and has relatively
quick catchment response times (Fovet et al 2015),
which makes it an ideal study area for an empirical
modeling study.

2. Materials andmethods

2.1. Study area
Brittany is a 27 000 km2 region located in the Armor-
ican Massif of northwestern France (figure 1). Its

geology is dominated by igneous and metamorphic
rocks (granite, schist, micaschist), and its topography
is relatively flat, with elevation ranging from 0–385 m
above sea level (Gascuel-Odoux et al 2010). Its cli-
mate is temperate oceanic, with a mean annual tem-
perature of 12 ◦C and a large rainfall gradient that
increases from 700 to 1300 mm from east to west
(Frei et al 2020). Its hydrology is characterized by
shallow aquifers in weathered and fissured layers
of bedrock, a high river density (1 km km−2) and
riparian wetlands (partly cultivated) that cover ca.
20% of the soil map (Aquilina et al 2012, Abbott et al
2018). Agriculture represents 80% of the land use
and is dedicated mostly to animal production. Brit-
tany contains 21%, 58%, 33% and 42% of France’s
dairy cows, pigs, layer chicken and broiler chicken,
respectively, on only 6% of France’s agricultural area
(Agreste Bretagne 2019). Industrial agriculture began
to develop there after 1945 and the European Union’s
Common Agricultural Policy (1962), this develop-
ment was more rapid and intense there than in other
French regions (Gascuel-Odoux et al 2010). The agri-
cultural N surplus was only 33 kg ha−1 yr−1 in 1955,
peaked at 104 kg ha−1 yr−1 in 1989 and decreased to
44 kg ha−1 yr−1 in 2015 (Poisvert et al 2017). Organic
andmineral N fertilizers represented 69% of N inputs
in 1955, 85% in 1989 and 80% in 2015. The rest came
from biological fixation by legumes and atmospheric
deposition.

2.2. Monitoring data and catchment characteristics
The study focused on 16 rivers in Brittany in which
nitrate monitoring started in 1976 or earlier and in
which nitrate was measured near a gauging station
that provided daily discharge data (figure 1). Water
quality was monitored on a regular interval (monthly
to bimonthly): the number of years from 1976–2015
with at least six sampling dates ranged from 23–40
among the catchments. All nitrate and discharge data
were collected bywater authorities for regulatory pur-
poses; they are publicly available at http://osur.eau-
loire-bretagne.fr/ and http://hydro.eaufrance.fr/.

N surplus data were estimated by Poisvert et al
(2017) based on agricultural statistics for each ‘com-
mune’, a French administrative unit with a mean area
of 15 km2. Because the study catchments ranged from
104–10 135 km2, we ignored uncertainties related to
farms with fields inmultiple communes or that trans-
ferred organic N to neighboring farms. Poisvert et al
(2017) calculated the annual N surpluses using a land
system budget (Oenema et al 2003, De Vries et al
2011). N inputs consist of mineral and organic fertil-
izer (farmyard manure and slurry), biological N fixa-
tion and atmospheric N deposition. N output are the
sum of N exported by each crop type. In this study,
N surplus was considered as a net diffuse N source
for the catchments. We ignored point-source inputs
because they represent a small percentage of total
N fluxes in France (i.e. 2% from 2005–2009 (Dupas
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Figure 1. Locations of the 16 study catchments in the Brittany region.

et al 2015)) and no long-term point-source data were
available.

The 16 catchments selected ranged from 104–
10 135 km2, had specific cumulative discharge of
195–689 mm yr−1 and a percentage of agricultural
land use of 73%–92%. Two of them are dominated
(i.e. >66%) by granite bedrock, nine are dominated
by schist/mica-schist and five of them have mixed
lithology (table 1).

2.3. Flux estimation and transit timemodeling
We first filled data gaps in the discharge time series
using the geomorphology-based SIMFEN model
(de Lavenne and Cudennec 2019). Developed for
Brittany, SIMFEN simulates discharge in ungauged
catchments by transposing net rainfall from neigh-
boring gauged ‘donor’ catchments and convoluting
this net rainfall via a geomorphology-based transfer
function. The percentage of discharge gaps ranged
1%–23%(median= 2%) and theNash–Sutcliffe (NS)
efficiency for catchments with >5%missing discharge
ranged 0.73–0.84. We then interpolated the monthly
concentration time series to a daily time step and then
to annual time step using the ‘Weighted Regressions
on Time, Discharge, and Season’ (WRTDS) provided
by the EGRET package (Hirsch et al 2010, Hirsch
and Decicco 2019) of R software. WRTDS is a load
estimation method that use time, discharge and sea-
son as explanatory variables, and re-estimates statist-
ical dependencies at each time step using the most

relevant dates to represent the concentration dynam-
ics and provide accurate load estimates (Zhang and
Hirsch 2019).

Previous studies in Brittany have shown (1) large
interannual variations in discharge, with annual dis-
charge in a wet year up to three times that in a
dry year (Gascuel-Odoux et al 2010), and (2) that
nitrate concentrations increased in wet years, causing
interannual variability in nitrate load to exceed that
of discharge (Dupas et al 2018, Mellander et al 2018).
The present study focused on long-term trends in
nitrate loads due to changes inN surplus, not to inter-
annual variations in the hydroclimate. Consequently,
we considered the EGRET flow-normalized annual
load rather than the actual estimated load. Using
a flow-normalized load throughout this study was
acceptable because, despite interannual variations,
none of the 16 study catchments exhibited a long-
term monotonous discharge trend from 1976–2015
(Mann–Kendall test, p > 0.05).

The input–output assessment considered N sur-
plus as an input and flow-normalized nitrate flux
as an output. N retention from 1976–2015 was
estimated as:

Retention= 1−
∑2015

i=1976 Flux i∑2015
i=1976 Surplus i

The estimated retention included both irrevers-
ible removal via denitrification and long-term revers-
ible storage.
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The TTD model consisted of a dynamic convolu-
tionmodel of the N surplus not retained in the catch-
ments, on an annual time step. The mathematical
function used was a lognormal distribution model
with amean (µ) and standard deviation (σ). Kirchner
et al (2000) found that distributions with tails longer
than those of exponential distributions (e.g. lognor-
mal or gamma) were suitable for modeling solute
transport in catchments, and Ehrhardt et al (2019)
successfully fitted a lognormal distribution to long-
term N surplus—N load data in a 270 km2 temperate
catchment. In essence, we fitted the TTD parameters
so that the N surplus convolved with the optimal dis-
tributionmatches the observed N loads at the outlets.
We calibrated the TTD model in a generalized like-
lihood uncertainty estimation (GLUE) framework
(Beven and Freer 2001). We performed 5000 model
runs assuming a uniform distribution in the range
[0:5] for log µ and [0:2] for log σ. We considered
models that exceeded a NS efficiency coefficient
of 0.60 to be ‘behavioral’, and calculated 5%–95%
credibility intervals of outputs of the NS-weighted
behavioral models.

Statistical analysis of TTD model outputs con-
sisted of calculating correlations between estim-
ated retention, transit time mode, transit percentiles
(10%, 50% (median) and 90%) and selected catch-
ment properties. The 10% transit time was selected
as the time needed to detect a response to a change in
N surplus, the 50% transit time represents the time
needed to transfer half of the N surplus in a given
year, and the 90% transit time represents the time
needed to reach near-equilibrium. In statistical ana-
lyses of transit time percentiles, we considered the
NS-weighted median of the behavioral models. The
catchment properties selected were catchment area,
dominant lithology and long-term runoff.

We assessed the fate of the retainedN (i.e. removal
via denitrification, or accumulation in soil, the vadose
zone and groundwater) in relation to estimates of N
accumulation from available soil N test data. Specific-
ally, we compared total N content (modified Kjeldahl
method ISO 11 261:1995) in the topsoil (0–30 cm)
measured from 30 484 and 36 764 soil tests in Brit-
tany from 2000–2004 and 2010–2014, respectively.
Because these soil data are protected by statistical con-
fidentiality, spatial coordinates of the sampling points
were not available (Saby et al 2014). The objective of
this approximate quantification was to compare the
magnitudes of plausible N accumulation and quanti-
fied N retention during the study period.

All the statistical analyses and figures were done
with the R software v. 3.5.1 (R Core Team 2019)

3. Results

3.1. Long-term nitrogen budget (1976–2015)
Cumulative N surplus inputs from 1976–2015 ranged
from1873–4424 kgNha−1 among the 16 catchments,

with a mean of 2960 kg N ha−1 (i.e. 74 kg ha−1

yr−1 on average for the 40-year period) (table 2).
During the same period, cumulative N flux ranged
from 398–1820 kg N ha−1, with a mean of 911 kg
N ha−1 (i.e. 23 kg ha−1 yr−1). The coefficient of
variation of cumulative flux exceeded that of cumu-
lative surplus (42% and 26%, respectively), and the
former was similar to that of long-term runoff (42%).
Cumulative N flux was not correlated with cumulat-
ive N surplus, but it was positively correlated with
long-termmean runoff (r= 0.87, p < 0.05). Cumulat-
ive N retention ranged from 45%–88% among catch-
ments, with a mean of 67%. This retention represen-
ted a range of 864–3505 kg N ha−1, with a mean of
2050 kg N ha−1 (i.e. 51 kg ha−1 yr−1 on average for
the 40-year period).

Both the N surplus and the flow-normalized N
flux varied by a factor of three during the study
period (figure 2). The N surplus increased from
18–44 kg ha−1 yr−1 (mean of 34 kg ha−1 yr−1) in
1976 to a maximum of 74–176 kg ha−1 yr−1 (mean
of 113 kg ha−1 yr−1) in 1988. It then decreased to
35–74 kg ha−1 yr−1 (mean of 49 kg ha−1 yr−1) in
2015. The flow-normalized N flux increased from
2–23 kg ha−1 yr−1 (mean of 11 kg ha−1 yr−1) in
1976 to a maximum of 12–57 kg ha−1 yr−1 (mean
of 30 kg ha−1 yr−1) in 1996. It then decreased to
11–41 kg ha−1 yr−1 (mean of 21 kg ha−1 yr−1) in
2015.

Themean± standard deviation of total N content
measured in the topsoil was 2.20 ± 0.87 g kg−1 from
2000–2004 and 2.29 ± 0.77 g kg−1 from 2010–2014,
indicating a statistically significant increase of 0.09 g
kg−1 in a 10-year period (Student’s t-test, p < 0.05).
Assuming a typical soil bulk density of 1.2 t m−3

(Ellili et al 2019), this increase in total N content from
7920± 3132 to 8244± 2772 kg N ha−1 represented a
mean accumulation of 32.4 kg ha−1 yr−1 in the first
30 cm of agricultural topsoil.

3.2. Transit time distributionmodelling
The GLUE approach yielded 166–1044 behavioral
parameter sets among the 16 catchments. Maximum
NS efficiencies ranged from 0.71–0.96 among the
catchments (figures SI 1 and 2 (available online at
https://stacks.iop.org/ERL/15/115011/mmedia)).
ThemodeledN flux behaved similarly to the observed
flow-normalized N flux in the long term (figure 3).

The response time (10% transit time) ranged
from 1.2–10.8 years, with a median 5%–95% credib-
ility interval of 9.4 years (table 2). The median transit
time ranged from 3.8–15.7 years, with a median
5%–95% credibility interval of 7.4 years. The estim-
ated equilibrium time (90% transit time) ranged from
12.7–25.2 years, with a median 5%–95% credibility
interval of 20.2 years. The mode (peak) of the TTD
ranged from 1.6–13.8 years, with a median 5%–95%
credibility interval of 9.8 years. Despite of a variety of
TTD shapes (figure 4), response times,median transit
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Figure 2. (a) Flow-normalized N flux (1976–2015) and (b) N surplus (1955–2015) in 16 catchments in Brittany.

times, mode and equilibrium time were strongly
correlated (r= 0.83–0.99, p < 0.05, figure SI 3).

3.3. Relation to geographic variables and
short-term concentrationmetrics
The long-term (1976–2015) retention rate was
negatively correlated with long-term mean runoff
(r = −0.88, p < 0.05), meaning that higher reten-
tion was observed in catchments with lower mean
runoff (figure 5(a)). The mode of the TTD was not
significantly correlated with long-term runoff. Gran-
ite and mixed-lithology catchments generally had
longer transit times than schist catchments (figure 5).
However, schist catchments had high variability in

the TTD mode, and the mixed-lithology catchment
Couesnon clustered with its schist-dominated neigh-
bors despite having a substantial percentage (46%) of
granite. This suggests that our classification of litho-
logy into three simplified categories explained only
some of the variability in the TTD mode. Neither
long-term retention nor the TTD mode were signi-
ficantly correlated with catchment area (figure SI 4).

4. Discussion

4.1. Fate of the missing nitrogen
The range of long-term retention estimated in 16
Brittany catchments (45%–88%) is similar to several

7
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Figure 3.Modeled (solid lines) and observed flow-normalized (dotted lines) N flux in 16 catchments in the Brittany region from
1976–2015. Modeled N flux is the Nash–Sutcliffe-weighted median simulation. Gray bands represent the 5%–95% uncertainty
interval.

Figure 4.Modeled (a) annual and (b) cumulative nitrate transit time distribution in 16 catchments in the Brittany region from
1976–2015. Curves represent the Nash–Sutcliffe-weighted median of behavioral models according to generalized likelihood
uncertainty estimation.

previous estimates in temperate regions. Billen et al
(2011) estimated that N retention from European
catchments that discharge into the Baltic, North,
Mediterranean and Black Seas, and the Atlantic
Ocean, averaged 78% of the net anthropogenic input.
Estimates of retention in the northeastern United
States also range from 70%–80% (Howarth et al 1996,
Boyer et al 2002, Howarth et al 2006). Studies at more
local scales found N retentions of 92% in a Medi-
terranean catchment (Lassaletta et al 2012), 88% in
a temperate continental catchment (Ehrhardt et al
2019) and 53± 24% in 160 French catchments using

short-term data from 2005–2009 (Dupas et al 2015).
We note, however, that these studies use different
N input data sources, which explains part of the
differences together with differences in catchment
properties.

This long-term estimate of N retention is more
reliable than the previous estimate from a 5-year
period in France, because estimates from short-term
studies have a higher risk of being influenced by tran-
sient states than long-term studies (Dupas et al 2015).
This long-term estimate is still subject to several
sources of uncertainty, however, including estimation

8
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Figure 5. Relations between long-term annual runoff (1976–2015) and (a) long-term retention and (b) the mode of the estimated
transit time distribution as a function of the dominant lithology.

of the N surplus, estimation of N load and no consid-
eration of point sources. By construction, estimating
the N surplus is uncertain because it is calculated as
a difference: in Brittany from 1976–2015, the mean
of all diffuse inputs (fertilizers, atmospheric depos-
ition, biological fixation) was 144 kg N ha−1 yr−1,
and the mean of all agricultural exports (harvest)
was 76 kg N ha−1 yr−1, resulting in an estimated N
surplus of 68 kg N ha−1 yr−1 (Poisvert et al 2017).
Because of the calculation by difference, uncertainty
of 10% in the input term would cause uncertainty of
21% in the estimate of N surplus. This effect should
encourage researchers to focus more on relative dif-
ferences in retention among catchments rather than
their absolute values. A previous study estimated that
nitrate represented 88% of total N load and point
sources represented a mean of 2% of N load on aver-
age in 38 catchments in Brittany from 2005–2009
(Dupas et al 2015). Because the data on non-nitrate
N and point source inputs were not available for our
long-term study period, we decided not to correct our
N load estimate and not include point-source inputs,
assuming that doing sowould have as little effect from
1976–2015 as from 2005–2009.

Like previous studies in France (Dupas et al 2015)
and North America (Howarth et al 2006), we found
that runoff predicted N retention well (r = −0.88).
Howarth et al (2006) hypothesized that high runoff
could decrease water residence times in riparian wet-
lands and low-order streams, thus decreasing deni-
trification. Dupas et al (2015) also pointed out that,
due to the short study period in their own study and
that of Howarth et al (2006), this observation could
also be due to catchments being in a transient state,
with wetter catchments responding faster to decreas-
ing N inputs than drier catchments. The fact that we
observed the same relation with runoff over a 40-year

period strengthens the hypothesis of Howarth et al
(2006) that wet areas are less favorable to perman-
ent N removal via denitrification or long-term accu-
mulation in soils. The lack of correlation between N
retention and catchment area results from the second-
ary role played by riverine processes on N retention
compared to hillslope processes in the Brittany region
(Casquin et al 2020).

The mean annual topsoil N accumulation
observed over a 10-year period in Brittany (32 kg
ha−1 yr−1) represented 64% of the estimated annual
retention observed over a 40-year period (51 kg ha−1

yr−1). Biogeochemical legacy could therefore account
for much of the apparent retention, as also hypo-
thesized by Worrall et al (2015) and observed by
Van Meter et al (2016). Both Van Meter et al (2016)
and Worrall et al (2015) nonetheless concluded that
N accumulated primarily in subsoils, suggesting that
our estimate of legacy soil N in the topsoil may even
underestimate the actual biogeochemical legacy.
Besides the lack of data on subsoils, several factors
make our estimate uncertain: potential inability of
a 10-year period to represent long-term N accumu-
lation, possible bias in the location of soils sampled
from 2000–2004 and 2010–2014, and lack of data
on non-agricultural soil. Gaining access the spatial
location of soil samples in the confidential data for
research purposes would allow us to correct potential
bias in sampling location and test whether areas with
higher observed N retention also accumulate more N
in the soil.

Despite these uncertainties, the conclusion that
N accumulation exceeds N removal agrees with two
independent studies in the 5 km2 Kervidy-Naizin
research catchment in Brittany, where denitrification
was estimated to represent only 17% of retention
(Durand et al 2015) and <10% of N export (Benettin

9
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et al2020). This legacy soil N is a potential threat
to aquatic ecosystems but also a potential resource
for crops that could allow farmers to reduce fertilizer
applications. Because much of the N retained is likely
to remain in the rooting zone, opportunities exist to
recycle it in agrosystems by favoring uptake of the
mineralizedNby crops. Accumulation of organicN in
soils also provides opportunities to sequester organic
carbon and contribute to climate change mitigation
(Bertrand et al 2019).

4.2. Nitrate transit time distribution
Many studies throughout theworld have documented
a lag time of several years to decades between decrease
in N net inputs and improvement in water qual-
ity (see Chen et al (2018) for a review), although
few have related this ‘delay’ to TTD percentiles. Our
estimated mode and median of nitrate TTD of ca.
10 years is similar to those of previous studies on
water TTD using chemical tracers and physical-based
models in Brittany (Molenat et al 2002, Martin et al
2004, Ayraud et al 2008, Aquilina et al 2012, Fovet
et al 2015). Ehrhardt et al (2019) also foundmodes of
19 and 12 years in two nested temperate catchments,
using a similar method with agricultural N surplus as
an input and assuming a lognormal transfer function.

As Van Meter and Basu (2015) noted, ‘[the exist-
ence of] biogeochemical nutrient legacies increases
time lags beyond those due to hydrologic legacy
alone’. Our estimated N TTD matched those previ-
ously estimated for water TTD because we assumed
that the missing N was permanently retained or
removed from the catchment, although the N that
accumulated in soil could also be considered to be in
transit (Howden et al 2011, Sebilo et al 2013, Worrall
et al 2015). As a result, the actual tail of N TTD
in Brittany is probably be thicker than our estim-
ate suggests, which explains our focus on the TTD
mode rather than on the equilibrium time.Withmore
detailed information about the variation in N storage
in soils and the vadose zone during the study period,
and more accurate estimates of mineralization and
denitrification rates, it would be possible to decrease
the risk of equifinality in models such as ELEMeNT,
which explicitly decomposes soil legacy, hydrological
legacy and denitrification (VanMeter et al 2017, 2018,
Ballard et al 2019).

Comparison of the catchments showed that gran-
ite and mixed-lithology catchments generally had
longer transit times than schist catchments, although
the latter had high variability in transit times. Pre-
vious groundwater dating studies have observed the
same trend of older water in granite catchments
than in schist catchments (Martin et al 2006, Ayraud
et al 2008).

5. Conclusion

This study used long-term time series of N surplus
and nitrate-N loads to estimate N retention and TTD
in 16 catchments in Brittany, France. Estimated N
retention ranged from 45%–88%, and the TTDmode
ranged from 2–14 years, which agrees with previ-
ous studies in similar contexts. We used a two-step
approach, first estimating N retention and then con-
voluting the remaining, exported N with a lognor-
mal distribution. It provided a long-termmean reten-
tion rate and TTD that were useful for capturing the
average behavior of catchments during the 40-year
study period. We acknowledge the variable nature
of both retention and TTD over time and emphas-
ize that our modeling approach should not be used
to predict future N loads in Brittany, because the
soil N accumulation documented in this study may
reach saturation in a not too distant future. Apparent
retention was controlled primarily by average run-
off, and the TTD mode was controlled in part by
lithology. Furthermore, observed variations in soil
N storage suggests that the biogeochemical legacy of
soils accounted for ca. two-thirds of the catchment-
scale N retention. From a methodological perspect-
ive, the uncertain fate of this biogeochemical legacy,
whether in transit through the catchment, denitrified
or taken up by crops, influences the estimated TTD.
From a management perspective, this biogeochem-
ical legacy is both a potential threat to aquatic ecosys-
tems and a potential resource that could be recycled in
agroecosystems.
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